Multiple Events of Allopolyploidy in the Evolution of the Racemose Lineages in Prunus (Rosaceae) Based on Integrated Evidence from Nuclear and Plastid Data

نویسندگان

  • Liang Zhao
  • Xi-Wang Jiang
  • Yun-juan Zuo
  • Xiao-Lin Liu
  • Siew-Wai Chin
  • Rosemarie Haberle
  • Daniel Potter
  • Zhao-Yang Chang
  • Jun Wen
چکیده

Prunus is an economically important genus well-known for cherries, plums, almonds, and peaches. The genus can be divided into three major groups based on inflorescence structure and ploidy levels: (1) the diploid solitary-flower group (subg. Prunus, Amygdalus and Emplectocladus); (2) the diploid corymbose group (subg. Cerasus); and (3) the polyploid racemose group (subg. Padus, subg. Laurocerasus, and the Maddenia group). The plastid phylogeny suggests three major clades within Prunus: Prunus-Amygdalus-Emplectocladus, Cerasus, and Laurocerasus-Padus-Maddenia, while nuclear ITS trees resolve Laurocerasus-Padus-Maddenia as a paraphyletic group. In this study, we employed sequences of the nuclear loci At103, ITS and s6pdh to explore the origins and evolution of the racemose group. Two copies of the At103 gene were identified in Prunus. One copy is found in Prunus species with solitary and corymbose inflorescences as well as those with racemose inflorescences, while the second copy (II) is present only in taxa with racemose inflorescences. The copy I sequences suggest that all racemose species form a paraphyletic group composed of four clades, each of which is definable by morphology and geography. The tree from the combined At103 and ITS sequences and the tree based on the single gene s6pdh had similar general topologies to the tree based on the copy I sequences of At103, with the combined At103-ITS tree showing stronger support in most clades. The nuclear At103, ITS and s6pdh data in conjunction with the plastid data are consistent with the hypothesis that multiple independent allopolyploidy events contributed to the origins of the racemose group. A widespread species or lineage may have served as the maternal parent for multiple hybridizations involving several paternal lineages. This hypothesis of the complex evolutionary history of the racemose group in Prunus reflects a major step forward in our understanding of diversification of the genus and has important implications for the interpretation of its phylogeny, evolution, and classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allopolyploidy in Fragariinae (Rosaceae): comparing four DNA sequence regions, with comments on classification.

Potential events of allopolyploidy may be indicated by incongruences between separate phylogenies based on plastid and nuclear gene sequences. We sequenced two plastid regions and two nuclear ribosomal regions for 34 ingroup taxa in Fragariinae (Rosaceae), and six outgroup taxa. We found five well supported incongruences that might indicate allopolyploidy events. The incongruences involved Apha...

متن کامل

Systematics and polyploid evolution in Potentilleae (Rosaceae)

Lundberg, M., 2011. Systematics and polyploid evolution in Potentilleae (Rosaceae). This thesis comprises studies of the phylogenetic relationships in the flowering plant clade Potentilleae in Rosaceae. The relationships were elucidated by using DNA sequence data from the nuclear genome as well as from the plastid genome. In particular, the focus of the studies was the investigation of allopoly...

متن کامل

Convergent Evolution at the Gametophytic Self-Incompatibility System in Malus and Prunus

S-RNase-based gametophytic self-incompatibility (GSI) has evolved once before the split of the Asteridae and Rosidae. This conclusion is based on the phylogenetic history of the S-RNase that determines pistil specificity. In Rosaceae, molecular characterizations of Prunus species, and species from the tribe Pyreae (i.e., Malus, Pyrus, Sorbus) revealed different numbers of genes determining S-po...

متن کامل

Evidence for reciprocal origins in Polypodium hesperium (Polypodiaceae): a fern model system for investigating how multiple origins shape allopolyploid genomes.

UNLABELLED • PREMISE OF THE STUDY Many polyploid species are composed of distinct lineages originating from multiple, independent polyploidization events. In the case of allopolyploids, reciprocal crosses between the same progenitor species can yield lineages with different uniparentally inherited plastid genomes. While likely common, there are few well-documented examples of such reciprocal ...

متن کامل

Divergence times and morphological evolution of the subtribe Eritrichiinae (Boraginaceae-Rochelieae) with special reference to Lappula

The subtribe Eritrichiinae belongs to tribe Rochelieae (Borginaceae; Cynoglossoideae) which is composed of about 200 species in five genera including Eritrichium, Lappula, Hackelia, Lepechiniella, and Rochelia. The majority of the species are annual and grow in xeric habitats. The genus Lappula as an arid adapted and the second biggest genus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016